(a)

(b)

The relative orientation of the four metal pentagons can be described as ABAB (sss) for 1 and ABBA (ses) for 2, respectively. The corresponding orientation of the two icosahedra may be described as $\alpha(\beta)\alpha$ and $\alpha(\gamma)\beta$, respectively. The former has an "additional" icosahedron (whose orientation is in parentheses) in the middle due to the staggered arrangement of the two middle rings in the sss configuration. The latter produces a bicapped pentagonal prism whose orientation is designated as γ (in parentheses). The propagation of icosahedra via vertex, edge, or face sharing through space is critically dependent upon the relative orientation of the icosahedral units (the building blocks) and is of current interest in terms of the structures of quasicrystals¹⁴ and amorphous materials.15

Finally, we note that the ses metal configuration (as observed for 2) allows stereochemically a "polyicosahedral" growth pathway via vertex sharing to give bi-, tri-, and tetraicosahedral supraclusters as exemplified by the structurally characterized 25- (2), $37-(3)^7$ or 38-(4),⁸ and $46-(5)^9$ metal-atom Au-Ag clusters, respectively. In all these structures, the icosahedral units are linked by (interpenetrating) bicapped pentagonal prisms (γ), instead of the (interpenetrating) icosahedra (β) as observed in the 25metal-atom cluster 1^{6a} with an sss metal configuration.

Acknowledgment is made to the National Science Foundation (Grant CHE-8722339) for financial support of this research. We would also like to express our sincere gratitude to Professor C. Strouse of UCLA for helpful discussions concerning modification of the crystallographic programs.

Supplementary Material Available: Full listings of complete structural data (Table I), positional parameters (Table II), anisotropic thermal parameters (Table III), positional and orientational parameters of 15 tolyl groups (Table IV), interatomic distances (Table V), interatomic angles (Table VI), and details of the preparation and crystallization (Table VII) for the title compound (20 pages); a listing of observed and calculated structure factors (Table VIII) (61 pages). Ordering information is given on any current masthead page.

- (a) Schechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Phys. Rev. Lett. (14) 1984, 53, 1951. (b) Levine, D.; Steinhardt, P. J. Phys. Rev. Lett. 1984, 53, 2477. (c) Bagley, B. Nature 1965, 208, 674. (d) Smith, D. J.; Mark, L. D. J. Cryst. Growth 1981, 54, 433. (15) (a) Briant, C. L.; Burton, J. J. Phys. Status Solidi 1978, 85, 393 and
- references cited therein. (b) Machizaud, F.; Kuhnast, F. A.; Flechon, J. Ann. Chim. (Paris) 1978, 3, 177.

Department of Chemistry	Boon K. Teo*
University of Illinois at Chicago	Hong Zhang
Chicago, Illinois 60680	

Received December 26, 1990

Short Spin-Lattice Relaxation Times of Hydride Ligands. **Proton-Metal Dipole-Dipole Interactions**

 T_1 measurements have recently been used for obtaining structural information about metal hydride complexes.¹⁻³ Crabtree and Luo⁴ have recently tested the basis of the T_1 method, assuming that only proton-proton dipole-dipole interactions (HHDDI) dominates the relaxation. They have found that, for a series of mononuclear polyhydrides for which both structural and relaxation data are available, there was good agreement between the calculated and observed $T_{1 \min}$ values.

This agreement is rather surprising in the case of rhenium hydrides, where significant metal-H dipole-dipole interactions (MHDDI) can be expected. Indeed, with $r_{\text{Re-H}} = 1.7$ Å and $\tau_{\text{c}} = 0.62/2\pi\nu^5$ at 250 MHz, the well-known⁶ eq 1 (where C =

- (3) Bautista, M. T.; Earl, K. A.; Maltby, P. A.; Morris, R. H.; Schweitzer, C. T.; Sella, A. J. Am. Chem. Soc. 1988, 110, 7031
- (4)Luo, X. L.; Crabtree, R. H. Inorg. Chem. 1990, 29, 2788.

⊕

Hamilton, D. G.; Crabtree, R. H. J. Am. Chem. Soc. 1988, 110, 4126.

Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95

Table I. NMR Data for Complexes I-III

parameter	I (C ₆ D ₅ CD ₃)	II ((CD ₃) ₂ CO)	III $(C_6D_5CD_3)$	
δ(CoH), ppm	-14.95 (290 K)	-13.13 (240 K)	-12.09 (290 K)	
$J(^{1}\text{HCo}^{31}\text{P}), \text{Hz}$	23.5	\triangleq 55(cis), \pm 35(cis), \mp 75(trans) ^a	48.5	
$\delta(\mathbf{Ph}), \mathbf{ppm}$	7.45 (o), 7.00 (m, p) (290 K)	7.30 ^b (240 K)	7.36 (o), 6.90 (m, p) (290 K)	
$\delta(^{31}P)$, ppm	72.03 (270 K), 74.75 and 70.62 (160 K) ^c	79.0 and 67.5 (180-290 K)	55.8 (290-180 K)	
$T_{1,\min}(CoH), ms$	40 (225 K)	43 (220 K)	41 (225 K)	
$T_{1 \min}$ (Ph-H), ms	390 (o), 720 (m, p) (225 K)	· ·	490 (o), 730 (m, p) (225 K)	

"The values were obtained by a simulation of the CoH₂ signal as XX'—part of the AA'BB'XX' spin system (A,B = ³¹P, X = ¹H). ^b The center of the multiplet. The signals have equal intensities; $\Delta \bar{G}^*$, the value for the position exchange process, is calculated as 7.5 kcal/mol at 170 K.

 $(4/30)r_{M-H}^{-6}\gamma_{H}^{2}\gamma_{M}^{2}\hbar^{2}I(I+1), I = \text{the spin of } M, \omega_{H}, \omega_{M} (\omega =$ $(2\pi\nu)$ = the Larmor frequencies of the nuclei ¹H and M, and τ_c = the molecular correlation time) gives $1/T_1 = 3.8 \text{ s}^{-1}$. Hence, between 22 and 27% of the hydride relaxation may come from the MHDDI in classical rhenium hydrides, where $1/T_{1 \text{ min}}$ values of 15-18.8 s⁻¹ are actually observed.²

$$\frac{1}{T_1} = C[3\tau_c/(1+\omega_H^2\tau_c^2) + 6\tau_c/(1+(\omega_H+\omega_M)^2\tau_c^2) + \tau_c/(1+(\omega_H-\omega_M)^2\tau_c^2)]$$
(1)

Equation 1 suggests that the M-H dipolar mechanism, in addition to the H-H dipolar one, can be appreciable in hydride complexes of ⁵¹V (I = 7/2), ⁵⁵Mn (I = 5/2), ⁷ ⁵⁹Co (I = 7/2), and ⁹³Nb (I = 9/2). We decided to obtain $T_{1 \min}$ values for the known complexes of cobalt CoH(Ph2PCH2CH2PPh2)2 (I), [CoH2- $(Ph_2PCH_2CH_2PPh_2)_2$ ⁺ (II), and CoH(CO)(PPh_3)_3 (III), where a M-H dipolar relaxation of the hydride ligands should be potentially more efficient than in rhenium hydrides.

The complexes were prepared by literature methods: CoH-(Ph₂PCH₂CH₂PPh₂)₂,^{8,9} [CoH₂(Ph₂PCH₂CH₂PPh₂)₂]⁺[BF₄]^{-,9} and CoH(CO)(PPh₃)₃.¹⁰ Solutions of the hydrides were carefully degassed and sealed under an Ar atmosphere in 5-mm NMR tubes. The T_1 experiments were performed on a 200-MHz Bruker instrument with a standard $180^{\circ} - \tau - 90^{\circ}$ pulse sequence.

A summary of the ¹H{³¹P} NMR data for complexes I-III is given in Table I. The X-ray data for $CoH(Ph_2P(CH_2)_3PPh_2)_2^{11}$ (IV) indicate that the geometry of IV is that of a distorted trigonal bipyramid. For I this is also evident from the ³¹P¹H NMR spectra, where two broad signals of equal intensity are observed at low temperatures. Our ¹H³¹P} NMR data for II support the formulation of the complex, based on IR measurements," as an octahedral cis-dihydride.

It should be noted that we attempted to prepare [CoH2- $(CO)(PPh_3)_3$ ⁺. However, a protonation of the monohydride III in CD₂Cl₂ or THF-d₈ with HBF₄ or HClO₄ was accompanied by isolation of dihydrogen. A 1:1:1 triplet of HD (δ 4.5, J_{HD} = 43.2 Hz) also appeared in the ¹H NMR spectrum when III was treated by CF_3COOD in toluene- d_8 . Hence, the dihydride $[CoH_2 (CO)(PPh_3)_3$ is probably unstable in solution.

Table I gives the $T_{1 \min}$ values for the hydrogen nuclei in complexes I-III. The relaxation of the phenyl protons ($T_{1 \text{ min}} = 0.4-0.7$ s at 225 K) was dominated by their mutual dipole interactions, so similar $T_{1 \min}$ values were observed for the phosphine protons of $\operatorname{RuH}_4(\operatorname{PPh}_3)_2$,¹² $\operatorname{RuH}_2(\operatorname{CO})(\operatorname{PPh}_3)_3$,¹² and $\operatorname{PtHCl}(\operatorname{PPh}_3)_2$.¹³ However, metal-bonded hydrogen atoms in complexes I-III relax

- (5) This τ_c holds at the maximum of the rate of HHDDI relaxation. Actually, at the maximum of the function given by eq 1, τ_c is equal to $0.93/2\pi\nu$. With this τ_c value, eq 1 gives $1/T_1 = 4.1 \text{ s}^{-1}$. Thus, the difference in these τ_c values leads to the 7% difference in $1/T_1$ values and can be neglected in the case of semiquantitative analysis.
- Abragam, A. The Principles of Nuclear Magnetism; Oxford University: New York, 1971; Chapter 4.

- Farrar, T. C.; Quinting, G. R. J. Phys. Chem. 1986, 90, 2834. Zingales, F.; Canziani, F.; Chiesa, A. Inorg. Chem. 1963, 2, 1303. Sacco, A.; Ugo, R. J. Chem. Soc. 1964, 3274. Whitfield, J. M.; Watkins, S. F.; Tupper, G. B.; Baddley, W. H. J. Chem. Soc., Dalton Trans. 1977, 407. (10)
- Holah, D. G.; Hughes, A. M.; Maciaszek, S.; Magnuson, V. R.; Parker,
- H. O. Inorg. Chem. 1985, 24, 3956. Gusev, D. G.; Vymenits, A. B.; Bakhmutov, V. I. Inorg. Chim. Acta 1991, 179, 195. (12)
- (13) Gusev, D. G. Unpublished results.

Table II. Calculated Minimum ¹H T_1 Times Corresponding to Different Co-H Distances

r(Co-H), Å	1.4	1.45	1.5	1.55	1.6
$T_{1 \min}$ (Co-H), ms	31	39	47.5	58	70
$T_{1 \min}$, ms	2 9 –27	35-32	42-38	49-45	58-52

significantly faster $(T_{1 \text{ min}} = 0.040 - 0.043 \text{ s})^{14}$ than in complexes where the main contribution to the relaxation of hydride ligands probably comes from dipolar interactions with phosphine ¹H and ³¹P nuclei.^{3,4} For example, $T_{1 \text{ min}}$ values for ¹H NMR hydride resonance(s) are equal to 0.38 s in PtHCl(PPh₃)₂,¹³ 0.2 s in IrHCl₂(P(Prⁱ)₃)₂,¹⁵ 0.26 s in RhHCl₂(P(Prⁱ)₃)₂,¹⁶ and 0.18–0.20 s in RuH₂(CO)(PPh₃)₃¹² at 200 MHz. It is doubtful that a relaxation rate of hydride ligands can be more than 5 s^{-1} (at 200 MHz) if there are not significant dipole interactions between H ligands (or between metal and hydrogen atoms).

The contribution to the relaxation rate of proton, due to the MHDDI, is given by eq 1. If we assume that τ_c in the minimum is 7.36 × 10⁻¹⁰ s ($\nu = 200$ MHz, $\tau_c = 0.93/2\pi\nu$), we can in principle calculate $T_{1 \text{ min}}$ (Co-H) from eq 1 with $r_{\text{Co-H}} = 1.4-1.6$ Å. Table II lists some calculated $T_{1 \min}$ (Co-H) contributions to total $T_{1 \text{ min}}$ times, obtained from eq 2 with other sources of relaxation being taken into account. We believe that reasonable values of $1/T_{1 \text{ min}}^*$ can be equal to 3-5 s⁻¹ at 200 MHz.

$$1/T_{1\min} = 1/T_{1\min}(\text{Co-H}) + 1/T_{1\min}^{*}$$
 (2)

The agreement between the calculated and the experimental $T_{1 \text{ min}}$ values is observed if $r_{\text{Co-H}}$ is ca. 1.5 Å. Monohydrides III and IV have the Co-H distances of 1.41 (9) $Å^{10}$ and 1.42 (3) $Å^{,11}$ respectively, according to X-ray diffraction. However, because the position of a proton and the centroid of electron density associated with it for a hydrogen atom bound to another atom do not coincide, the observed disparity is typical for a M-H bond.¹⁷

⁹³Nb has spin $I = \frac{9}{2}$. In this case still larger relaxation rates are expected. So eq 1 predicts the $T_{1 \min}$ (Nb-H) value of 0.028 s for niobium-bonded hydrogen if $r_{Nb-H} = 1.5$ Å at 200 MHz.

As was shown above, MHDDI contribute markedly to the T_1 relaxation of hydride ligands in rhenium complexes. Cotton and co-workers¹⁷ have recently confirmed that this fact in the case of Cp_2ReH . Unfortunately, they have given a qualitative interpretation of the experimental data only. Therefore we decided to recalculate the $T_{1 \min}$ value for the binuclear complex $Re_2H_4(\mu-H)_4(PEt_2Ph)_4$. In this polyhydride both the neutron diffraction structure¹⁸ and the $T_{1 \min}$ value¹⁷ are available, but the observed $T_{1 \text{ min}}$ of 140 ms at 400 MHz is significantly shorter than that calculated by Crabtree and Luo⁴ (302 ms).

The known equation for HHDDI² and eq 1 applied to the structural data for Re₂H₄(μ -H)₄(PEt₂Ph)₄ give $1/T_{1 \text{ min}}$ of 3.2 and 2.65 s⁻¹, respectively ($\tau_c = 0.62/2\pi\nu$, $\nu = 400$ MHz), and the total

- (17)Cotton, F. A.; Luck, R. L.; Root, D. R.; Walton, R. A. Inorg. Chem. 1**990**, *2*9, 43.
- Bau, R.; Carroll, W. E.; Teller, R. G.; Koetzle, T. F. J. Am. Chem. Soc. (18)1977, 99, 3872.

⁽¹⁴⁾ Note: After submission of our manuscript, we became aware of very similar $T_{1 \text{ min}}$ values in related complexes, CoH(P(OEt)₂Ph)₄ and [CoH₂(P(OEt)₂Ph)₄]BPh₄, which have been recently measured by Al-[Coractor Polarger 10,4] Brnd, which have ocen recently measured by Albertin et al. (Albertin, G.; Amendola, P.; Antoniutti, S.; Bordignon, E. J. Chem. Soc., Dalton Trans. 1990, 2979).
[15] Bakhmutov, V. I.; Gusev, D. G.; Vymenits, A. B.; Grushin, V. V.; Vol'pin, M. E. Metalloorg. Khim. 1991, 4, 164.
[16] Gusev, D. G.; Bakhmutov, V. I.; Grushin, V. V.; Vol'pin, M. E. Inorg. Chim. Acta 1990, 175, 19.
[17] Oritor F. A. Luck, P. L.; Deat, D. B.; Walker, D. A. Luce, Chim.

 $T_{1 \text{ min}}$ value is equal to 171 ms. The difference (1.3 s^{-1}) between the calculated rate and the observed one is probably due to a contribution to the relaxation of hydride ligands from the phosphine protons and the deuterons of the solvent molecules.^{3,7} For example, in the complex Re₂H₄(μ -H)₄(PMe₃)₄, there are few phosphine protons and the averaged $T_{1 \text{ min}}$ of H ligands is 162 ms.¹⁷

Thus, a MHDD interaction can significantly decrease ¹H T_1 relaxation times. For this reason one should be very careful with quantitative interpretation of the T_1 data in the case of hydride complexes of V, Mn, Co, Nb, and Re.^{19a}

Note Added in Proof. An analysis of the factors contributing to the spin-lattice relaxation time T_1 for $OsH_4(P(Tol)_3)_3$ and related hydrides, including, among other things, the large metal-hydride dipole-dipole interaction contributing to a short $T_{1 \min}$ in Re₂H₈(PEt₂Ph)₄, appeared after this work was entered into production (see: Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 4173-4184).

(19) (a) Note: After submission of our manuscript we become aware^{19b} of an independent paper (Luo, X.-L.; Howard, J. A. K.; Crabtree, R. H. Submitted for publication in *Magn. Reson. Chem.*) where a very similar conclusion has been formulated. (b) Crabtree, R. H. Private communication.

Institute of Organo-Element Compounds Academy of Sciences of the USSR 117813 Moscow, USSR Vladimir I. Bakhmutov*

Received February 28, 1991

New Synthetic Routes to Azavinylidene Half-Sandwich Type Complexes

Among transition-metal complexes containing metal-nitrogen double bonds, nitrene-metal as well as azavinylidene-metal compounds have received increasing attention.^{1,2} In connection with our studies on vinylidene-metal derivatives of the general type [(ring)M(=C=CRR')(L)],^{3,4} we recently found that the corresponding *azavinylidene* complexes [(C₆H₆)Os(=N= CRR')P(Me)(t-Bu)₂]PF₆ (3) are accessible from [(C₆H₆)OsH-

- Interscience: New York, 1988.
 (2) Recent publications on azavinylidene-metal complexes: (a) Erker, G.; Frömberg, W.; Atwood, J. L.; Hunter, W. E. Angew. Chem., Int. Ed. Engl. 1984, 23, 68. (b) Frömberg, W.; Erker, G. J. Organomet. Chem. 1985, 280, 343. (c) Erker, G.; Frömberg, W.; Krüger, C.; Raabe, E. J. Am. Chem. Soc. 1988, 110, 2400. (d) Bercaw, J. E.; Davies, D. L.; Wolczanski, P. T. Organometallics 1986, 5, 443. (e) Green, M.; Mercer, R. J.; Morton, C. E.; Orpen, A. G. Angew. Chem., Int. Ed. Engl. 1985, 24, 422. (f) Latham, I. A.; Leigh, G. J.; Huttner, G.; Jibril, I. J. Chem. Soc., Dalton Trans. 1986, 377. (g) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Organometallics 1988, 7, 1148. (h) Barron, A. R.; Salt, J. E.; Wilkinson, G.; Motevalli, M.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1987, 2947. (i) Dormond, A.; Aaliti, A.; Elbouadili, A.; Moise, C. J. Organomet. Chem. 1987, 329, 187. (j) Woo, H.-G.; Tilley, T. D. J. Organomet. Chem. 1990, 393, C6. (k) Feng, S. G.; Templeton, J. L. J. Am. Chem. Soc. 1989, 111, 6477. (l) Merzweiler, K.; Fenske, D.; Hartmann, E.; Dehnicke, K. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1989, 44B, 1003. (m) Klinzing, P.; El-Kholi, A.; Müller, U.; Dehnicke, K. Z. Anorg. Allg. Chem. 1989, 569, 83.
- (3) $M = Rh; ring = C_3H_3; L = PiPr_3:$ (a) Wolf, J.; Werner, H.; Serhadli, O.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. 1983, 22, 414. (b) Werner, H.; Wolf, J.; Garcia Alonso, F. J.; Ziegler, M. L.; Serhadli, O. J. Organomet. Chem. 1987, 336, 397. (c) Werner, H.; Brekau, U. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1989, 44B, 1438.
- (d) M = Os; ring = C₆H₆; L = PiPr₃, P(Me)(*t*-Bu)₂: (a) Weinard, R.; Werner, H. J. Chem. Soc., Chem. Commun. 1985, 1145. (b) Knaup, W. Ph.D. Thesis, Universität Würzburg, 1988. (c) Werner, H.; Weinard, R.; Knaup, W.; Peters, K.; von Schnering, H.-G. Manuscript in preparation.

Scheme I. L = P-i-Pr3

(I)P(Me)(t-Bu)₂] (1), AgPF₆, and ketoximes in good yields.⁵ In two cases, the cationic hydrido oxime derivatives {(C₆H₆)OsH-[N(OH)=CRR']P(Me)(t-Bu)₂]PF₆ (2) have been characterized as intermediates which by elimination of water give the final products.

During attempts to prepare analogues of 3 with ligands L other than $P(Me)(t-Bu)_2$, we observed that the type of phosphine ligand used plays a critical role in the course of the reaction. Replacement of $P(Me)(t-Bu)_2$ even by $P-i-Pr_3$ causes difficulties that were unexpected owing to the similar size of the two phosphine molecules.⁶

In trying to escape the dilemma, we discovered that ketimines are more suitable starting materials for the synthesis of azavinylidene-osmium complexes [(arene)Os(==N=CRR')(L)]X than ketoximes. Here we describe three alternative pathways to prepare compounds of the above-mentioned type and in addition report the synthesis of the first azavinylidene-*iridium* complex containing [(C_5Me_5)IrP(Me)(t-Bu)₂] as a structural unit.

Under conditions similar to those used for the preparation of 3, compound 4^7 reacts with HN=CPh₂ in presence of AgPF₆ to give the orange-yellow imine complex 5 (see Scheme I).⁸ If after filtration the reaction mixture is treated with NEt₃, orange crystals of the azavinylidene complex 6 are isolated in 78% yield.⁹ A similar procedure has also been applied for the preparation of the corresponding mesitylene-osmium derivative [(mes)Os(=N= CPh₂)(P-*i*-Pr₃)]PF₆ (8),⁹ in this case using [(mes)Os(P-*i*-Pr₃)Cl₂]

(6) Tolman, C. A. Chem. Rev. 1977, 77, 313.

(8) Selected IR and NMR spectroscopic data of 5 are as follows. IR (KBr): ν (NH) 3235 cm⁻¹. ¹H NMR (60 MHz, CD₃NO₂): δ 10.93 (s, br, 1 H, NH), 7.6 (m, 10 H, C₆H₃), 5.77 (s, 6 H, C₆H₄), 2.90 (m, 3 H, PCHCH₃), 1.33 (dd, 18 H, J(PH) = 13.7 Hz J(HH) = 7.1 Hz, PCHCH₃). ³¹P NMR (36.2 MHz, CD₃NO₂): δ -1.74 (s, P-*i*-Pr₃), -145.48 (sept, J(PF) = 707.4 Hz, PF₆).

Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley-Interscience: New York, 1988.

⁽⁵⁾ Werner, H.; Knaup, W.; Dziallas, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 248.

⁽⁷⁾ Werner, H.; Kletzin, H.; Roder, K. J. Organomet. Chem. 1988, 355, 401.